欧美老熟妇乱大交XXXXX,成人小说亚洲一区二区三区,99无码熟妇丰满人妻啪啪,国产SM主人调教女M视频

歡迎訪問廣州儀德精密科學(xué)儀器股份有限公司
主營(yíng)產(chǎn)品:X射線熒光光譜儀

6系鋁棒在熔鑄生產(chǎn)過程中硅、鎂元素的損耗分析

點(diǎn)擊次數(shù):5869  更新時(shí)間:2020-04-20

熔鑄生產(chǎn)是鋁材加工的一道工序,熔鑄產(chǎn)品的質(zhì)量與擠壓型材的質(zhì)量密切相關(guān)。擠壓型材的各項(xiàng)性能,除了工藝條件的影響外更需要靠合金成份的穩(wěn)定及均勻性來保證。金屬材料的性能取決于它的組織和結(jié)構(gòu),組織與結(jié)構(gòu)又是由化學(xué)成份、雜質(zhì)含量、加工方法、熱處理工藝決定的,其中化學(xué)成份是決定材料性能的基本因素。在6系鋁合金中,Si和Mg是主要合金元素,鎂硅組成的Mg2Si(β)相是該系合金的主要強(qiáng)化相,這兩種合金元素,其中硅元素屬于相對(duì)難熔元素,合金化的彌散及吸收對(duì)熔煉溫度和攪拌的要求較高(金屬硅的熔點(diǎn)為1414℃,密度2.33 g/cm3),所以為了提高硅的吸收和彌散效果,在熔煉6系鋁合金時(shí)一般采用加中間硅(102合金)的形式進(jìn)行合金化操作。鎂元素由于其熔點(diǎn)低密度輕(金屬鎂密度:1.738 g/cm3 ;金屬鎂熔點(diǎn):650 ℃),屬于易燒損合金,而在熔煉6系列合金的過程中一般采用加高純鎂錠的方式進(jìn)行合金化操作。該兩種合金元素在熔煉合金化過程中均存在一定的不穩(wěn)定因素,因此,研究該系合金在熔鑄過程中硅鎂的變化,對(duì)精確控制6系合金中的硅鎂含量具有重要的意義。目前論述鋁合金熔煉過程中鎂燒損的文獻(xiàn)有一些介紹,但是論述6系列合金在熔鑄過程中硅鎂元素的量化損耗,介紹的文獻(xiàn)較少。本文在生產(chǎn)實(shí)踐的基礎(chǔ)上,總結(jié)了幾種不同硅鎂含量的6系列合金,在熔鑄生產(chǎn)各環(huán)節(jié)硅和鎂元素的損耗情況,并提出相應(yīng)的控制方法。

 

1  試驗(yàn)方法

 

1.1  工藝流程簡(jiǎn)介:

 采用以下工藝流程進(jìn)行合金鋁棒的生產(chǎn):投料→熔化→控溫→扒渣→合金化→精煉→加覆蓋劑→靜置→鑄造(深井熱頂鑄造)。合金化工序加入的硅為中間硅合金,加入的鎂為高純鎂錠。整個(gè)熔鑄生產(chǎn)過程中,重點(diǎn)驗(yàn)證精煉、靜置和鑄造前、后期硅鎂含量的變化。

 

1.2  取樣要求:

1)取樣次序要求:每爐次分別在以下四個(gè)環(huán)節(jié)取樣:

     ①精煉前在爐內(nèi)取樣作分析; 
    ②精煉后在爐內(nèi)取樣作分析; 
     ③鑄造1米時(shí)在流槽處取樣作分析; 
     ④鑄造8米時(shí)在流槽處取樣作分析。

 2)爐內(nèi)取樣要求:采用特制的樣勺在爐膛的中間勺取鋁液,倒入樣模制成試樣,要求每批次取兩塊試樣;取樣溫度控制在720-750℃。

3)流槽取樣要求:采用特制的樣勺在流槽勺取鋁液,倒入樣模制成試樣,要求每批次取兩塊試樣。

 

1.3  檢測(cè)手段:

 采用德國(guó)SPECTRO MAXx直讀光譜儀對(duì)所取試樣進(jìn)行成份檢測(cè)。采用西南鋁熔鑄廠制備的鋁合金標(biāo)準(zhǔn)試樣校準(zhǔn)光譜儀。要求每個(gè)試樣檢測(cè)三個(gè)點(diǎn),每批次取樣兩塊,化驗(yàn)結(jié)果取6個(gè)點(diǎn)的平均值,記錄下檢測(cè)結(jié)果。

 

1.4  實(shí)驗(yàn)合金的選擇及熔煉生產(chǎn)的控制

變形鋁及鋁合金化學(xué)成份國(guó)家標(biāo)準(zhǔn)(GB/T 3190—2008)中,6系列合金Mg含量變化范圍大概在0.25%-1.2%之間,Si含量變化范圍大概在0.3%-1.7%之間。為了使得實(shí)驗(yàn)數(shù)據(jù)具有代表性,分別選取四種不同成份的合金進(jìn)行驗(yàn)證,選取的6060合金在6系鋁合金中屬于低硅鎂含量的合金;6061合金在6系鋁合金中屬于高硅鎂含量的合金;6063合金在6系鋁合金中屬于中等硅鎂含量合金;6082合金在6系鋁合金中屬于高硅鎂含量的合金。

 

為了驗(yàn)證不同工藝對(duì)元素?fù)p耗的影響,嚴(yán)格控制四種不同硅鎂含量的6系列合金,按照表2-1中的工藝進(jìn)行熔煉生產(chǎn)。其中6060合金生產(chǎn)2爐次,6061合金生產(chǎn)2爐次,6063合金生產(chǎn)4爐次,6082合金生產(chǎn)2爐次。分別按照5個(gè)不同工藝方案進(jìn)行熔煉生產(chǎn)。方案1、2、4、5對(duì)比不同精煉工藝對(duì)硅鎂損耗的影響;方案3、4對(duì)比不同靜置時(shí)間對(duì)硅鎂損耗的影響。

 

表2-1:實(shí)驗(yàn)方案及工藝參數(shù)控制表

4.jpg

 

3  實(shí)驗(yàn)結(jié)果及分析

3.1  按照以上實(shí)驗(yàn)方案,記錄并整理精煉前、精煉后、鑄造1米及鑄造8米鎂含量的數(shù)據(jù)如表3-1和圖3-1所示。

 

表3-1     Mg含量在熔鑄各階段的變化

直讀光譜儀分析表

圖3-1     Mg含量在熔鑄各階段的變化趨勢(shì)圖

 

光譜儀曲線表

 

從實(shí)驗(yàn)數(shù)據(jù)來看,兩種不同靜置工藝(方案3靜置100分鐘與方案4靜置20分鐘),在725℃-745℃的溫度范圍內(nèi)靜置,對(duì)6系合金中Mg的損耗影響輕微,差異不大。分析原因:鋁液表面氧化后會(huì)形成較為致密的氧化膜,該氧化膜能夠有效的阻止下層金屬繼續(xù)氧化,靜置期間表層氧化膜穩(wěn)定未遭到破壞,并且6系列鋁合金中含鎂量不高,鎂在鋁中的溶解度較大,在這種狀態(tài)下即使發(fā)生氧化也是非常緩慢的。

 

 鑄造過程鎂含量的變化量在0.5%左右,對(duì)成份穩(wěn)定性的影響非常輕微。

 

 精煉工序是6系列合金Mg損耗的主要環(huán)節(jié),從方案4對(duì)比方案5的結(jié)果來看,合金中Mg含量越高,在相同的精煉條件下,鎂元素的損耗量越大,尤其是在較長(zhǎng)的精煉時(shí)間下差異更顯著。 從方案1、2對(duì)比方案4、5來看,精煉劑的用量及精煉時(shí)間是精煉環(huán)節(jié)影響Mg損耗的主要因素,隨著精煉劑用量的加大和精煉時(shí)間的延長(zhǎng),Mg元素的損耗量加大。從綜合數(shù)據(jù)來看6系列鋁合金精煉環(huán)節(jié)Mg的損耗量在4%-8%之間。分析精煉環(huán)節(jié)Mg元素的損耗主要有以下兩個(gè)因素:

 

①由于采用的精煉劑為發(fā)熱型精煉劑,精煉粉與熔體反應(yīng)局部放熱,又由于噴粉的方式為以氮?dú)鉃檩d體把粉末狀精煉劑吹進(jìn)入熔體內(nèi),期間伴隨著熔體的攪動(dòng)和液面的翻滾,破壞了表層的氧化鋁保護(hù)膜,從而增加了Mg的接觸燒損。

 

②精煉劑主要成份為氯鹽及冰晶石,國(guó)內(nèi)生產(chǎn)精煉劑時(shí)為了提高精煉除氣除渣的效果,普遍的會(huì)在精煉劑中加入六氯乙烷C2Cl6。而Mg元素在鋁合金熔體中化學(xué)性質(zhì)相對(duì)較為活潑,因此Mg會(huì)優(yōu)先與精煉劑中的這些氯化物反應(yīng)生成MgCl2 ,從而導(dǎo)致熔體中Mg的損耗。

 

         2Al+3C2Cl6→2AlCl3+3C2Cl4
          3Mg+2AlCl3→2Al+3MgCl2(損耗) 
          Mg+C2Cl6→MgCl2(損耗)+C2Cl4(C2Cl6優(yōu)先與Mg反應(yīng))

3.2  按照以上實(shí)驗(yàn)方案,記錄并整理精煉前、精煉后、鑄造1米及鑄造8米硅含量的數(shù)據(jù)如表3-2和圖3-2所示。

 

表3-2   Si含量在熔鑄各階段的變化

4.jpg

圖3-2     Si含量在熔鑄各階段的變化趨勢(shì)圖

 

圖3-2     Si含量在熔鑄各階段的變化趨勢(shì)圖

 

 從實(shí)驗(yàn)數(shù)據(jù)來看,Si元素在整個(gè)熔鑄生產(chǎn)過程中,成份波動(dòng)不穩(wěn)定,整體波動(dòng)范圍不大,在-2%-3%之間,出現(xiàn)負(fù)值反映出Si在熔煉生產(chǎn)的過程中擴(kuò)散的不理想,因此熔鑄生產(chǎn)的過程中Si的精確控制,關(guān)鍵在于加強(qiáng)合金化的攪拌操作和采取合理的加硅方式。

 

硅含量波動(dòng)原因分析:生產(chǎn)過程中102的加入階段是在爐料*熔化,熔體溫度控制在一定范圍之后,把固態(tài)的102合金加入到高溫熔體內(nèi)進(jìn)行合金化操作。由于102合金中Si的含量不高ω(Si)=10%-22%,根據(jù)6系鋁合金中Si的含量要求,整個(gè)合金化過程中加入的102合金的量將在幾百到上千公斤之間。大量的102加入熔體內(nèi)不但增加了攪拌難度,并且使得爐內(nèi)熔體溫度迅速下降20℃-60℃。由于合金化溫度佳范圍是在720-750℃之間(過高的熔體溫度增加吸氣和燒損)。又根據(jù)Al-Si二元相圖分析(圖3-3),ω(Si)=10%-22%的102合金熔化溫度應(yīng)控制在700-730℃。以上102合金熔化溫度范圍的要求與合金化導(dǎo)致降溫幅度過大之間的矛盾,使得Si在吸收的過程中出現(xiàn)不穩(wěn)定因素,影響了Si在熔體內(nèi)的均勻分布從而出現(xiàn)了各階段Si含量不穩(wěn)定波動(dòng)的現(xiàn)象。


圖3-3:Al-Si二元相圖


圖3-3:Al-Si二元相圖

4  結(jié)論及控制措施

 通過實(shí)驗(yàn)在6系鋁合金熔鑄生產(chǎn)過程中分階段取樣,并采用德國(guó)SPECTRO MAXx直讀光譜儀對(duì)所取試樣進(jìn)行成份檢測(cè)。分析了四種不同硅鎂成份的6系列合金鋁棒在精煉、靜置、鑄造工序硅、鎂元素的損耗情況。總結(jié)了6系列合金鋁棒在熔鑄生產(chǎn)過程中硅、鎂的主要損耗環(huán)節(jié),以及各環(huán)節(jié)硅、鎂元素的損耗量。針對(duì)6系鋁合金Mg、Si成份的精確控制,提出一些控制措施,從而保證了產(chǎn)品性能的穩(wěn)定性。通過對(duì)6系鋁合金熔鑄生產(chǎn)過程中各環(huán)節(jié)Si、Mg的損耗情況的驗(yàn)證,得出如下結(jié)論并提出控制措施:

 

 (1)、Si元素在6系鋁合金熔鑄生產(chǎn)過程中,成份波動(dòng)不穩(wěn)定,但是整體波動(dòng)范圍不大,在熔煉的合金化環(huán)節(jié)應(yīng)加強(qiáng)攪拌。為了改善Si的吸收,合金化加入硅的形態(tài)應(yīng)以102合金為宜,并在裝爐料的時(shí)候把102合金裝在爐底同爐料一起熔化,這樣能充分的利用熔煉過程中的升溫和攪拌操作提高硅在熔體內(nèi)的均勻分布。為了提高Si的吸收,102合金中Si的含量應(yīng)控制在10%-14%。

 

(2)、在正常的靜置溫度內(nèi)(725℃-745℃),靜置時(shí)間對(duì)6系鋁合金Mg元素?fù)p耗影響非常小,可以不計(jì)。

 

(3)、6系列合金熔鑄生產(chǎn)過程中,鎂元素的損耗主要發(fā)生在精煉環(huán)節(jié),其損耗量隨精煉時(shí)間和精煉劑用量的增加而增大。

 

(4)、6系鋁合金中Mg含量越高,在相同的精煉條件下,鎂元素的損耗量越大。

 

(5)、6系列鋁合金在精煉環(huán)節(jié)Mg的損耗量在4%-8%之間,實(shí)踐生產(chǎn)的過程中可參照以上損耗量進(jìn)行控制,合金化的過程中Mg應(yīng)該盡量走上限值,或按照目標(biāo)加入量的104%-106%進(jìn)行加鎂操作,終把鎂含量控制在理想范圍內(nèi)。

 

本文作者:劉一崢、劉智杰、楊翠顏、李干希、周超彥

作者單位:臺(tái)山市金橋鋁型材廠有限公司

在線客服